Performance and Analysis of a New Pipeline Pig Design for the Removal of Deposits from Corrosion Pits

Dan Fletcher, Ph.D., P.Eng.
Vincent Foong, MIET, MCMI, FIDIAG.E
Michael Hooper
Fiberbuilt Manufacturing Inc.
Introduction

- Internal Corrosion cause of 51% [1] of upstream multiphase pipeline failures
- Pitting is a major concern
 - Under Deposit Corrosion
 - Microbe Induced Corrosion
- Need to disrupt deposits
- Improve pig effectiveness
- Improve pigging programs
- Improving pig performance can improve entire mitigation program effectiveness

Mitigating Pit Corrosion (UDC/MIC)

- Disrupt deposits
- Local pit environment
- Improve surfactant efficacy
- Remove Deposits from pit
- Clean to depths of pits
- Get inhibitors to pit bottom
Background Study

- AITF – PICOM Joint Industry Project Phase 1
 - Completed December 2014
 - Evaluation of Pig Design for Deposit Removal from Corrosion Pits
- Test Method and Apparatus
 - 4 Inch Flow Loop (Water), simulated ‘sludge’
 - Measure the depth and volume removed from pits

Results of Background Study [3]

• Evaluation of commercially available pigs
• Brushes are essential to effective pit cleaning
• Brushes did not reach to nominal size
• Effective cleaning to a depth equivalent to only to 25% of Pit Diameter
• Multiple passes provides only a very slight (not statistically significant) cleaning benefit

Improved Pit Cleaning Pig and Method

• Significant room for improvement
• Clear need to improve pit cleaning brushes
 – Improve effective reach into pits
 – Make multiple runs more effective
• Improve pigs and pigging programs
 – Increase pig performance
 – Develop pig that allows for multiple runs
 – Enable pigging in aggressive applications
New Pit Cleaning Brush Design

- Improved brush geometry
- Combination of Radial and Raked Brushes
- Increase brush oversize
- Brush spacing resists debris buildup and pack-off
- Performance testing completed at the 4” AITF Flow Loop
Cleaning Performance

Depth of Cleaning with Successive Runs - Various Pit Sizes

DEPTH OF CLEANING (mm)

1 Pass 2 Passes 3 Passes 4 Passes

PIT DIAMETER (mm)

4.8 7.9 9.5 12.7 19.0
Depth as a % of Pit Diameter

Depth of Cleaning with Successive Runs - Various Pit Sizes

DEPTH OF CLEANING (% PIT DIAMETER)

PIT DIAMETER (mm)

4.8 7.9 9.5 12.7 19.0

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Depth as a % of Pit Diameter

Depth of Cleaning with Successive Runs - Various Pit Sizes

50% - 70% Improvement

Best AITF JIP Results [3]

Edmonton, Alberta, Canada
February 14th-16th, 2017
Volume Removed from Test Coupons

Volume of Cleaning with Successive Runs - Various Pit Sizes

% VOLUME OF SLUDGE REMOVED

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

1 Pass 2 Passes 3 Passes 4 Passes

PIT DIAMETER (mm)

4.8 7.9 9.5 12.7 19.0

Edmonton, Alberta, Canada
February 14th-16th, 2017
Clean 0.75 inch (19 mm) pit

- Concentric rings in false colour image show conical drill point
New Pig Seal Design

- Composite Construction
- Brush/Diaphragm/Brush
 - Brushes = Support
 - Diaphragm = Sealing
- Modular Design
- Reduced pressure differential
 - Pig more often
Pigging with Reduced Differential Pressure

- New Seals reduce Differential Pressure (DP)
- Can select DP for requirements
- Alternative to Urethane
- Modular and easily adapted for aggressive environments
 - Aromatics, Bitumen, H₂S, CO₂, H₂, High Temperatures
Improved Pig for Pit Cleaning

New Pit Cleaning Brush

• Novel brush geometry
• Deep pit cleaning: effective to 37-40% of pit diameter
• Volume cleaning: removes up to 100% of pit deposits
• Performance improves greatly with multiple passes

Multiple Pass Pigging

• Enables improved corrosion pit cleaning – multiple runs
• New seal concept
• Reduced drag and applied differential pressure
• Reduced pigging impact on well production